Table of Contents to Papers

Scroll to the title and select a Blue link to open a paper. After viewing the paper, use the bookmarks to the left to return to the beginning of the Table of Contents to Papers.

Atmosphere Technology

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of Process Control Methods for Nitrogen-Hydrocarbon Atmospheres</td>
<td>1</td>
</tr>
<tr>
<td>Xiaolan Wang¹, Zbigniew Zurecki², and Richard D. Sisson, Jr.¹</td>
<td></td>
</tr>
<tr>
<td>(1) Worcester Polytechnic Institute, Worcester, MA, USA</td>
<td></td>
</tr>
<tr>
<td>(2) Air Products & Chemicals, Inc., Allentown, PA, USA</td>
<td></td>
</tr>
<tr>
<td>Independently Controlled Carbon and Nitrogen Potential – A New Approach to Carbonitriding Processes</td>
<td>9</td>
</tr>
<tr>
<td>Karl-Michael Winter, Process-Electronic GmbH, Heiningen, Germany</td>
<td></td>
</tr>
<tr>
<td>Capitalizing on Current Technology Used in Data Acquisition</td>
<td>17</td>
</tr>
<tr>
<td>Bob Fincken, Super Systems, Inc., Cincinnati, OH, USA</td>
<td></td>
</tr>
</tbody>
</table>

Brazing

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient Liquid Phase Diffusion Bonding of Stainless Steel 304 Using Copper and Aluminium Filler Interlayers</td>
<td>20</td>
</tr>
<tr>
<td>M. Mazar Atabaki¹, ², J. Noor Wati², and J. Bte Idris¹</td>
<td></td>
</tr>
<tr>
<td>(1) University of Leeds, Leeds, UK</td>
<td></td>
</tr>
<tr>
<td>(2) Universiti Teknologi Malaysia, Malaysia</td>
<td></td>
</tr>
</tbody>
</table>

Cryogenic Processing

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Effect of Cryogenic Processing on the Mechanical Properties of Austempered Ductile Cast Iron (ADI)</td>
<td>44</td>
</tr>
<tr>
<td>Susil K. Putatunda¹, Codrick Martis¹, Frederick Diekman², and Rozalia Papp³</td>
<td></td>
</tr>
<tr>
<td>(1) Wayne State University, Detroit, MI, USA</td>
<td></td>
</tr>
<tr>
<td>(2) Controlled Thermal Processing Inc., Park City, IL, USA</td>
<td></td>
</tr>
<tr>
<td>(3) Air Liquide US LP, Countryside, IL, USA</td>
<td></td>
</tr>
</tbody>
</table>

Emerging Technologies

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microstructural Characterization and Creep Properties of Cast Nb, Zr-Modified HP Steels</td>
<td>50</td>
</tr>
<tr>
<td>Fernando B. Martins¹, Marcelo Martins², George E. Totten³, Frederico A.P. Fernandes⁴, and Luiz C. Casteletti⁴</td>
<td></td>
</tr>
<tr>
<td>(1) Federal University of São Carlos (UFSCar), São Paulo, Brazil</td>
<td></td>
</tr>
<tr>
<td>(2) Sulzer Brasil S/A, Americana, São Paulo, Brazil</td>
<td></td>
</tr>
<tr>
<td>(3) Portland State University, Portland, OR, USA</td>
<td></td>
</tr>
<tr>
<td>(4) São Carlos School of Engineering (USP), São Paulo, Brazil</td>
<td></td>
</tr>
</tbody>
</table>
Quantum Jump in Heat Treating ... 55
Shobhan Paul, Starfire Technologies LLC, Malibu, CA, USA

Method for Accurate Surface Temperature Measurements during Fast Induction Heating ... 60
Benjamin Larregain\(^1\), Nicolas Vanderesse\(^1\), Florent Bridier\(^1\), Philippe Bocher\(^1\), and Patrick Arkinson\(^2\)
(1) École de Technologie Supérieure, Montreal, Quebec, Canada
(2) Pratt & Whitney Canada, Longueuil, Quebec, Canada

Equipment Design

The Aerodynamic Furnaces for Heat Treatment .. 68
Alexey Sverdlin\(^1\), Matthew A. Panhans\(^1\), Yury Sokolov\(^2\), and Arnold Ness\(^3\)
(1) Milwaukee School of Engineering, Milwaukee, WI, USA
(2) Rzhev, Russia
(3) Bradley University, Peoria, IL, USA

Operational Efficiency Improvements Resulting from Monitoring and Trim of Industrial Combustion Systems .. 76
Damian Bratcher, Super Systems, Inc., Cincinnati, OH, USA

Evolution of Microstructures

Automatic Vickers Case Depth Measurement .. 81
Arnold Horsch, AHOTEC® e.K., Remscheid, Germany

New Heat Treatment Temperatures for HR-120\(^\text{TM}\) Alloy .. 86
Octavio Covarrubias\(^1,2\) and Rafael Colas\(^2\)
(1) Frisa Forjados SA de CV, Santa Catarina, NL, Mexico
(2) Universidad Autonoma de Nuevo Leon, San Nicolas, NL, Mexico

Gear Heat Treatment

Intelligent Heat Treating: Simulation of Carburization Process .. 91
Y. Wei\(^1\), G. Wang\(^1\), R.D. Sisson, Jr.\(^1\), B. Bernard\(^2\), and R. Poor\(^2\)
(1) Worcester Polytechnic Institute, Worcester, MA, USA
(2) Surface Combustion, Inc. Maumee, OH, USA

Austempered Materials for Powertrain Applications .. 99
Justin Lefevre and Kathy L. Hayrynen
Applied Process Technologies Division, Livonia, MI USA

Integral Preoxidation of Aerospace Gear Steel .. 108
Timothy De Hennis\(^1\), Dale Weires\(^1\), and Tyler Pounds\(^2\)
(1) The Boeing Company, Philadelphia, PA, USA
(2) Northstar Aerospace (Chicago) Inc., Bedford Park, IL, USA

New Carbonitriding Processes .. 115
Franz T. Hoffmann, Matthias Steinbacher, P.D. Brigitte Clausen, Sebastian Bischoff, Heinrich Klümpen-Westkamp, and Hans-Werner Zoch, Stiftung Institut für Werkstofftechnik (IWT), Bremen, Germany
Global Issues

Detailed Specifications for Global Heat Treatment Sourcing and Materials .. 122
Jared Sponzilli\(^1\) and John Sponzilli\(^2\)
(1) Navistar, Inc., Melrose Park, IL, USA
(2) Warrenville, IL, USA

Quality Improvement in Heat Treatment Based on Necessary Information Exchange 131
Volker Ermert\(^1\), Arnold Horsch\(^2\), Dieter Klein\(^3\), Thorsten Wuest\(^3\), Rainer Kohlmann\(^4\),
Ralph Mahlig\(^5\), and Britta Rentrop\(^6\)
(1) Wolf Behälter- und Apparatebau GmbH & Co. KG, Wilnsdorf, Germany
(2) AHOTEC e.K., Remscheid, Germany
(3) BIBA - Bremer Institut für Produktion und Logistik GmbH, Bremen, Germany
(4) Werkstoffberater, Siegen, Germany
(5) VHK Vakuum-Härterei Kölerner GmbH, Schmerbach, Germany
(6) Glüh- und Härteotechnik Unna GmbH & Co KG, Unna, Germany

Heat Treat Manufacturing Advances

Cleaning for Heat Treating ... 138
D. Scott MacKenzie and Robert Johnston, Houghton International, Inc., Valley Forge PA, USA

Bottleneck Oriented Load Planning in Heat Treatment –
Optimizing the Production Flow Saves on Time and Resources .. 144
Karl-Michael Winter, Process-Electronic GmbH, Heiningen, Germany

Adoption of Automation and Process Control in a Job Shop ... 148
Tom Benoit, The Flame Treating and Engineering Company, West Hartford, CT, USA

Induction Heating

Cost-Effective Technology for Induction Contour Hardening of
Bevel, Hypoid and Pinion Gears ... 151
Semyon Brayman\(^1\), Anatloy Kuznetsov\(^1\), Sergey Nikitin\(^1\), Bob Binoniemi\(^1\), and Valery Rudnev\(^2\)
(1) ERS Engineering Corp., West Bloomfield, MI, USA
(2) Inductoheat Inc., Madison Heights, MI, USA

Unique Computer Modeling Approaches for Simulation of
Induction Heating and Heat Treating Processes .. 158
Valery Rudnev, Inductoheat Inc., Madison Heights, MI, USA

Data Acquisition for Numerical Modelling of Induction Surface Hardening –
Process Specific Considerations .. 167
Maximilian Schwenk, Jürgen Hoffmeister, and Volker Schulze,
Karlsruher Institute of Technology (KIT), Karlsruhe, Germany

Recent Inventions and Innovations in Induction Hardening of
Gears and Gear-Like Components .. 177
Valery Rudnev, Inductoheat Inc., Madison Heights, MI, USA
Stress and Distortion Evolution during Induction Case Hardening of Tube 182
Valentin Nemkov¹, Robert Goldstein¹, John Jackowski¹, Lynn Ferguson², and Zhichao Li²
(1) Fluxtrol, Inc., Auburn Hills, MI, USA
(2) Deformation Control Technology, Inc., Cleveland, OH, USA

Light Alloys

Dissolution of Second Phase Particles in 319-Type Aluminum Alloy 189
Leo J. Colley³, Mary A. Wells², Robert MacKay⁴, and Wojciech Kasprzak⁴
(1) University of British Columbia, Vancouver, BC, Canada
(2) University of Waterloo, Waterloo, ON, Canada
(3) Nemak Engineering Centre, Windsor, ON, Canada
(4) CANMET Materials Technology Laboratory, Hamilton, ON, Canada

Properties of Semi-Finished Products and Welded Joints of Aluminum Alloy V92Zr after Prolonged Low-Temperature Heating 199
Alexey Sverdlin and Matthew Panhans, Milwaukee School of Engineering, Milwaukee, WI, USA

Heat Treatment of Development for Rapidly Solidified Heat Resistant Cast Al-Si Alloy 205
W. Kasprzak¹, D.L. Chen², and E. Thibodeau³
(1) CANMET Materials Technology Laboratory, Hamilton, Ontario, Canada
(2) Ryerson University, Toronto, Ontario, Canada
(3) McGill University, Montréal, Quebec, Canada

Microstructures

Effect of Heat Treatment on Fracture Toughness of Micro-Alloyed Steel 212
Joydeb Nag Chaudhur¹ and R.C. Prasad²
(1) University of Mumbai, Mumbai, India
(2) Indian Institute of Technology Bombay, Mumbai, India

Nitriding, Carbonitriding, and Nitrocarburizing

The Influence of Nitrocarburizing on Wear Behaviour of Forging Dies 226
J.B. Mane¹, R.C. Prasad², and B. Radhakrishnan³
(1) Bharat Forge Ltd., Pune, Maharashtra, India
(2) Indian Institute of Technology Bombay, Bombay, Maharashtra, India

Quenching and Control of Residual Stresses

Heat Transfer Properties of a Series of Oxidized and Unoxidized Vegetable Oils in Comparison with Petroleum Oil-Based Quenchants 235
Ester Carvalho de Souza¹, Lauralice C.F. Canale¹, G. Sánchez Sarmiento², Eliana Agaliotis³,
Juan C. Carrara¹, Diego S. Schicchi⁴, and George E. Totten⁵
(1) Universidade de São Paulo, São Carlos, SP, Brazil
(2) Universidad del Salvador, Buenos Aires, Argentina
(3) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
(4) Universidad Tecnológica Nacional, Buenos Aires, Argentina
(5) Texas A&M University, Seattle, WA, USA
Simulation of Stress and Strain for Induction Hardening Applications 244
Dmitry Ivanov, Leif Markegård, and John Inge Asperheim, EFD Induction a.s., Skien, Norway

Distortion Control of Transmission Components by Optimized High Pressure Gas Quenching .. 253
Volker Heuer1, Donald R. Faron2, David Bolton3, Mike Lifshits4, and Klaus Loeser6
(1) ALD, Hanau, Germany
(2) General Motors, Pontiac, MI, USA
(3) ALD Thermal Treatment, Port Huron, MI, USA

Effect of the Oxidation Stability of Soybean Oil and Palm Oil on Steel Quenching Performance .. 258
Diego Said1, Gabriela Belinato5, Rosa L. Simencio Otero2, Lauralice C.F. Canale6, Gustavo S. Sarmiento3, Analia Gastón4, and George E. Totten4
(1) Universidad Tecnológica Nacional, Buenos Aires, Argentina
(2) Universidade de São Paulo, São Carlos, SP, Brazil
(3) Universidad Nacional de Rosario, Rosario, Argentina
(4) Portland State University, Portland, OR, USA

Epoxidized Soybean Oil: Evaluation of Oxidative Stabilization and Metal Quenching/Heat Transfer Performance .. 266
Rosa L. Simencio Otero1, Lauralice C.F. Canale4, Diego Said Schicchi2, Eliana Agaliotis3, George E. Totten6, and Gustavo Sánchez Sarmiento5
(1) Universidad de São Paulo, São Carlos, SP, Brazil
(2) Universidad Tecnológica Nacional, Buenos Aires, Argentina
(3) Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
(4) Texas A&M University, Seattle, WA, USA
(5) Universidad del Salvador, Buenos Aires, Argentina

Effect of Bath Temperature on Surface Heat Flux during Quenching in CNT Nanofluids .. 277
K. Babu1 and T.S. Prasanna Kumar2
(1) SSN College of Engineering, Kalavakkam, Chennai, India
(2) IIT Madras, Chennai, India

Surface Hardening

Development of Low-Cost, Rapid Case Hardening Treatments for Austenitic Stainless Steels .. 285
Xiaolan Wang1, Zbigniew Zurecki5, and Richard D. Sisson, Jr.1
(1) Worcester Polytechnic Institute, Worcester, MA, USA
(2) Air Products & Chemicals, Inc., Allentown, PA, USA

Effect of Process Time on Low-Temperature Nitrided Austenitic Stainless Steels Layer Structure .. 295
D. Koshel and J. Kalucki, Nitrex Metal Inc., St. Laurent, QC, Canada

William R. Jones Honorary Symposium on Vacuum Technology

The Vacuum Heat Treatment of Titanium Alloys for Commercial Airframes .. 301
Robert Hill, Solar Atmospheres, USA
The Evolution of High “Tech” Vacuum Furnaces ... 303
Robert M. Huckins, G-M Enterprises, Corona, CA, USA

Energy Efficient Vacuum Solutions for Industrial Furnaces .. 305
Uwe Zöllig and Mario Vitale, Oerlikon Leybold Vacuum, Cologne, Germany

Multi-Purpose LPC+LPN+HPGQ 25 Bar N₂/He Single Chamber Vacuum Furnaces 309
Maciej Korecki¹, Józef Olejnik¹, Piotr Kula², Robert Pietrasik², and Emilia Stańczyk-Wołowiec²
(1) Seco/Warwick S.A., Świebodzin, Poland
(2) Technical University of Lodz, Poland