
1. Introduction 
 

Ti–6Al–4V is a representative titanium alloy that has been 
widely used in aerospace, defense, and biomedical 
applications because of its high strength-to-weight ratio, 
excellent corrosion resistance, and biocompatibility1,2). The 
alloy consists of a hexagonal close-packed (hcp) α-matrix 
and a body-centered cubic (bcc) β-phase. Moreover, non-
equilibrium phases, i.e., the α′ (hcp)- and α′′ (orthorhombic)-
martensites and the ω-phase, also appear, depending on the 
processing conditions. 

Recently, metastable β-titanium alloys that display 
transformation-induced plasticity (TRIP) and twinning-
induced plasticity (TWIP) have been developed, attracting 
much attention as a novel class of titanium alloys3–6). 
Although such β-Ti alloys generally consist of single-phase 
β-microstructures, low-alloy TRIP-assisted steels have 
exhibited significant strain hardening that originates from 
strain-induced martensitic transformation in minor retained 
austenite7–11). 

In this study, analogous to low-alloy TRIP steels, we 
demonstrated the TRIP/TWIP effect in duplex Ti–6Al–4V 
alloys by manipulating the mechanical stability of the 
retained β-phase12). The metastable retained β-phase was 
introduced via water quenching from the high-temperature α 
+ β duplex phase field (850 °C). 
 

2. Experiment 
 
2.1 Sample preparation 

Ti–6Al–4V alloy rods, which were finally annealed at 
704 °C for 2 h followed by air cooling, were used as the 
starting material. The rods were heat treated in an argon 
atmosphere at 850 °C for 2 h, followed by water quenching. 
Hereafter, the heat-treated specimen is referred to as HT-850. 

2.2 Microstructural and mechanical characterization 
The microstructures of the as-received and HT-850 

specimens were characterized by field-emission scanning 
electron microscopy (FE-SEM), field-emission electron 
probe microanalysis (FE-EPMA), and scanning 
transmission electron microscopy (STEM). Time-of-flight 
neutron diffraction measurements were conducted at 
iMATERIA (BL20), J-PARC, Japan. Uniaxial tensile testing 
was performed at room temperature at an initial strain rate of 
1.0 × 10−4 s−1. Tensile specimens with gauge lengths of 16 
mm, gauge widths of 2 mm, and gauge thicknesses of 1 mm 
were prepared from each specimen. 
 

3. Results and discussion 
 
3.1 Microstructures  

Figures 1(a) and 1(b) show the SEM-backscattered 
electron (BSE) images of the as-received and HT-850 
specimens, respectively. The white area corresponds to the 
β-phase. Grain growth, associated with an increase in the β-
phase fraction, was observed in the HT-850 specimen. The 
area fractions of the retained β-phase were approximately 6 
and 25% for the as-received and HT-850 specimens, 
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Figure 1. SEM-BSE images of the (a) as-received and (b) 
HT-850 specimens. 
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respectively. Neutron diffraction measurements revealed a 
negligible difference in the texture. The EPMA elemental 
analysis clarified that the retained β-phase was enriched in V 
and Fe, whereas Al was distributed preferentially in the α-
phase. The heat treatment decreased the V and Fe 
concentrations in the retained β-phase, decreasing the β-
phase stability compared with that in the as-received state. 
 
3.2 Tensile deformation behavior 

Figure 2(a) shows the engineering stress-engineering 
strain curves for the as-received and HT-850 specimens. No 
obvious strain hardening was detected in the as-received 
specimen, as is typically observed in Ti–6Al–4V alloys. In 
contrast, the HT-850 specimen displayed dramatic strain 
hardening, although the 0.2% proof stress was lower than 
that of its as-received counterpart. The strain-hardening rate 
(θ) was calculated using the following equation: 
θ = dσt/dεt     (1), 
where σt and εt are true stress and true strain, respectively. As 
shown in Fig. 2(b), the strain-hardening rate for the as-
received specimen decreased continuously with increasing εt, 
whereas a higher θ was obtained for the HT-850 specimen 
over the entire strain range. Notably, the HT-850 specimen 
demonstrated a remarkable increase in θ after an initial 
decrease, reaching a very high value of ~3 GPa. Notably, the 
HT-850 specimen demonstrated a remarkable increase in θ 
after an initial decrease, reaching a very high value of ~3 

GPa. Accordingly, the HT-850 specimen exhibited larger 
uniform elongation. The STEM observations revealed that 
the HT-850 specimen underwent a strain-induced β → α′′ 
martensitic transformation, which was associated with 
nanoscale (021)α′′ twinning, upon tensile loading. Therefore, 
the observed significant strain hardening is responsible for 
the TRIP/TWIP effect in the retained β-phase. 
 

4. Conclusions 
 

In summary, the Ti−6Al−4V alloy heat treated at 850 °C, 
followed by water quenching, exhibited significant strain 
hardening upon tensile loading. The strain-induced β → α′′ 
martensitic transformation in the metastable retained β-
phase was responsible for the strain hardening (i.e., 
TRIP/TWIP effect), governing the macroscopic mechanical 
behavior This study demonstrated the proof-of-concept of 
low-cost duplex TRIP/TWIP titanium alloys. 
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Figure 2. (a) Engineering stress-engineering strain curves 
and (b) true stress and strain-hardening rate as a function 
of true strain for the as-received and HT-850 specimens. 
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