
 

 

1. Introduction 

The digitization of manufacturing in the automotive 

industry is generating large amounts of data that can be used 

to optimize and reduce costs in production. In particular, the 

use of machine learning (ML) and deep learning algorithms 

offers great potential for increasing efficiency and quality in 

production. 

Constant processes and the associated low variance of the 

process data are a major challenge for the use of ML in 

production. This is especially the case in the heat treatment 

of metallic materials, where processes are developed for a 

product and then little or no adjustments are made over the 

years. An example of this is the austempering process. 

Internal investigation have shown, that unlike martensitic 

hardening, austempering produces a bainitic microstructure 

with only slightly less hardness but significantly better 

fatigue strength. 

For economic reasons, heat treatment is carried out in 

batch processes, where usually only a few individual 

components of a batch are subjected to quality testing. This 

involves metallographic testing. This inspection is costly 

because it is destructive and requires expert knowledge.  

An important test criterion for the quality of the batch is 

the hardness measurement of test specimens. At the same 

time, quality control with hardness testing is subject to 

measurement uncertainties, especially when only a few 

indentations are measured, as is often the case in production. 

One method of hardness testing is the Vickers hardness 

measurement, which is used in this work. The prediction 

quality of a ML model is limited by the quality of the data. 

As hardness measurement shows scatter in the results, it is 

crucial to check the uncertainty of the prediction. By 

uncertainty quantification, it is possible to assess whether the 

prediction is valid. Standard ML models cannot represent 

these uncertainties, nor do they understand the limits within 

which they are valid. 

Therefore, this paper presents two methods for uncertainty 

quantification, implements a hybrid model for Vickers 

hardness prediction, and shows the advantages and 

disadvantages of the applied methods. The prediction model 

is a ML model that is additionally fed with physical 

information. Through the combination of simulation and ML 

techniques in a hybrid model, model properties such as 

robustness and explainability can be improved (1). 

The focus of this work is to explore uncertainty 

quantification in the context of predicting Vickers hardness 

measurements for an austempering series process. The rest 

of the paper is organized as follows. In Section 2, a literature 

review of the uncertainty quantification and the background 

of the austempering process is given. In Section 3 the 

Results of the uncertainty quantification in the context of the 

austempering is discussed and in Section 5 a conclusion is 

provided. 

2. Methodology and Process 

2.1 Uncertainty Quantification (UQ): 

The application of ML methods in manufacturing and 

materials science is becoming increasingly popular. Most 

recently published ML approaches are deterministic, i.e., for 

each input there is a unique output (2). However, 

deterministic models have limited understanding of their 

own knowledge (3) and often overestimate (4), which can 

lead to high error costs in production. Therefore, accounting 

for uncertainty in ML models can increase the reliability of 

prediction results (5). 

In uncertainty quantification, two different uncertainties 

can be distinguished, Aleatoric and Epistemic Uncertainty. 

Aleatoric Uncertainty, also called data uncertainty, describes 

the uncertainty which results from noise in the data (e.g., 

measurement uncertainty). This uncertainty will not be 

further investigated in this work. 

Epistemic Uncertainty (EU), on the other hand, describes 

uncertainty due to missing information in the data and can 

be reduced by adding the missing data (6, 7). In addition, the 

EU can identify situations that were not part of the training 
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dataset (5). The EU is calculated by measuring the variance 

in the predicted means (8). To illustrate this uncertainty, 

consider an example from the field of autonomous driving. 

Suppose a system is trained in Tokyo (Japan) and then the 

car is driven to Stuttgart (Germany). In Stuttgart, we drive 

on the right side of the road and the signs look different than 

in Tokyo. Here the system should realize that its knowledge 

is limited and cannot be used for this situation (6). 

Uncertainty quantification for regression can be divided 

into the Statistical and the “Bayesian” approaches. The 

Statistical approaches contain the methods Single 

Hypothesis, Likelihood Estimation and Density Estimation. 

The "Bayesian" approaches includes methods like Gaussian 

Processes and Bayesian Neural Networks (BNN) (3). In this 

work the focus will be on the likelihood estimation, more 

specific the Fisher Information (FI) and the BNN. 

The Maximum Likelihood Estimation (MLE) is a 

statistical principle that involves finding the parameter 

values of a model that maximize the probability of observing 

the given data and serves as a common method for parameter 

estimation. FI quantifies the curvature of the likelihood 

function. This provides information about the precision of 

parameter estimates and the confidence intervals, which is 

related to EU (3). Using the described method the confident 

value is calculated using the ForestCI Package in python (9). 

BNN on the other hand are neural networks that model the 

EU by representing weights as probability distributions, also 

called prior. Instead of optimizing for fixed weights, 

Bayesian inference is used to compute the posterior 

distribution over the weights. This posterior represents a 

range of plausible model parameters given the data (3). 

Additional the Aleatoric Uncertainty is modeled as a 

Gaussian distribution with added observation noise in the 

last neural network layer (5). 

For the prediction of the uncertainty the ML models are 

often over or underconfident, for this reason the uncertainty 

has to be calibrated prior to the prediction (10). For the 

calibration of the uncertainty the python package 

Uncertainty-Toolbox was used (11). 

2.2 Process Chain & Quality Assurance 

The process under consideration is a two-stage 

austempering process for automotive components. The 

components are heat treated in batches in a multi-chamber 

furnace. A batch consists of several hundred components 

made of the material 100Cr6 (ASTM 52100), which are 

arranged in several layers.  

The components are manufactured in series on ten 

matching IPSEN TQA-4 (5) chamber furnaces. These 

furnaces are referred to as salt bath lines. The multi-chamber 

furnaces consist of three stations, a process gas furnace, a 

salt bath, and a low temperature convection furnace. In the 

first furnace, the components are fully austenitised with 

partial dissolution of carbides. In the salt bath, the 

components are quenched and held just above the martensite 

start temperature. In the last furnace, further transformation 

to bainite takes place at a temperature above the salt bath. 

The components are held in the convection furnace until the 

desired degree of bainite transformation is achieved. Finally, 

the parts are cleaned and inspected in the metalographic lab 

to ensure quality. 

For quality control, one or two components are taken from 

each batch at specified locations. These are tested as 

representative of the batch. In addition to further 

metallographic examinations, hardness is measured at a 

specified position on the surface and in the core of the 

component. The hardness measurement is Vickers using 

HV10. Three hardness indentations are made for each 

position in accordance with the standard and the average 

value at each position is stored in a database.  

For traceability and process monitoring and control, data 

is collected for each batch and also stored in a database. All 

data can be assigned to a batch using a unique ID. Metadata 

such as furnace number and process start are stored in 

addition. For process monitoring, sensor signals of the 

temperature in the furnace and the gas flow of the inert glass 

are also recorded. 

Before extracting features from described data, the data 

must be prepared. This means removing incorrect and 

missing data as well as unifying timestamps. To extract the 

features, the metadata is transformed into columns with 

values of one and zero using One-Hot Encoding. For each 

furnace chamber, the duration is determined from the 

transient data and characteristic segments are identified. For 

each segment, the mean, minimum, maximum and skewness 

are calculated. For the hybrid approach the integral over the 

Hollomon-Jaffe parameter was calculated for each segment. 

In addition, the features were extended by the results of Erick 

Dabrock’s empirical equation for dry austempering (12).  

In addition, feature selection for the BNN is performed as 

a function of the F-score to reduce the number of features.  

The core hardness is used as a label for the models. The 

hardness is subject to uncertainties due to the measurement 

method. For example, according to DIN-EN-ISO-6507-3, 

with a reference hardness of 700 HV, a maximum range of 

3.4 %, or 23.8 HV, is allowed for 25 HV10 measurements on 

a refence plate. Assuming that the measurements are 

normally distributed, this error corresponds to a standard 

deviation of about 4.1 HV (13). For serial measurements, the 

error can be expected to be higher.  

The MLE is applied to Forest Ensemble Regressors (FER). 

With the best result for the Random Forest Regressor (RFR) 

and the Extra Trees Regressor (ETR). To find the optimal 

parameters of the regression model, a Bayesian 

Hyperparameter Optimization (BHPO) was performed on 

the R2 metric. 

3. Results and Discussion 

Series data was used to train the models. This data 

contains the process data of different types of components. 

These components were heat treated with variations in the 

process. The data is not divided randomly, but all the data 

before a certain point in time form the training data and all 

the data after the point in time form the test data. If the data 

were split randomly, it could happen that the model 

performed well on the test data set but poorly in predicting 

future batches. The data sets are divided by days, where one 

day corresponds to an average of two digits of produced 

parts. 30 days were chosen for the test data and 10 days for 

the validation data. 

 

 



 

 

Table 1: Result Hyper-Parameter-Optimization for ML algorithm with UQ. 

Algorithm Toolbox Hyperparameter 

ETR Scikit-

learn 

n estimators: 2200, max 

depth: 20, bootstrap: True, 

train data: 547 days 

BNN Tensorflow input layer (231), hidden 

layer (10) output layer (2), 

train data: 284 days 

Hyperparameter optimization was performed to identify 

the best model for the FER and BNN models. Optimization 

for the FER models are much simpler due to the smaller 

number of parameters and training time. While training a 

FER model takes a few minutes, training a BNN model takes 

several hours on a GPU cluster. The best model and 

parameters for the FER and BNN models are shown in 

Table 1. Table 2 shows the accuracy metrics of the two best 

models. The accuracy of the models is compared using the 

coefficient of determination R2, which indicates the 

proportion of scatter in the underlying distribution, and the 

mean absolute error (MAE). Uncertainty is reflected by the 

Mean Absolute Calibrated Error (MACE) metric. The ETR 

model performs best for both accuracy metrics. Considering 

the expected measurement uncertainty of the hardness test 

from the previous chapter and comparing it with the MAE, 

it is noticeable that the ETR model with an MAE of 4.41 HV 

is close to the value of 4.1 HV from the standard. The 

resulting deviation can be explained by the serial process, as 

it is not in the optimum conditions for a reference plate. 

Table 2: Core hardness prediction results with uncertainty. 

 ETR + MLE BNN 

R2 0.89 0.86 

MAE 4.41 4.97 

MACE 0.02 0.04 

EU (mean) 5.71 5.35 

Figure 1 shows how well the two models represent the 

hardness of the components. In this figure, the abscissa 

shows a section of the validation data labels (core hardness) 

and prediction of the models sorted by value. The ordinate 

shows the relative distribution of the hardness values. While 

the BNN model shows different levels that can be matched 

to different products, the ETR model provides a much better 

representation of hardness across the label space. 

Furthermore, the calibrated EU (in bright blue) describes the 

uncertainties of the ETR model well, with the uncertainty 

increasing as the predicted value deviates from the measured 

value. This correlation is also shown by the MACE metric. 

  

Figure 1: Ordered Prediction Intervals: a) ETR-Model 

and b) BNN-Model. 

4. Conclusion and Outlook 

Large amounts of process and test data are stored in series 

production. To use the data to predict test criteria such as 

hardness, data must be processed, and relevant features 

extracted. Low variation of the data combined with high 

measurement uncertainty is a challenge. ML models with 

UQ are particularly suitable for this type of data. Not only 

do they represent the data well, but they also provide an 

estimate of the quality of the prediction. This is particularly 

useful in manufacturing environment. When deciding 

whether to inspect a batch, not only the prediction result can 

be used, but also how confident the model is in its prediction. 

While the ETR model outperformed the BNN model on the 

data shown, the BNN model offers advantages when 

considering the aleatory uncertainty. Which is not possible 

with the FER models. In the future, models with UQ could 

be used to predict test results to reduce the frequency of 

testing. 
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