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This paper develops an optimized prediction method based on machine learning for optimal process parameters for vacuum carburizing. The
critical point is data expansion through machine learning based on a few parameters and data, which leads to optimizing parameters for vacuum
carburization in heat treatment. This method extends the data volume by constructing a neural network with data augmentation in the presence of
small data samples. In this paper, the database of 213 data is expanded to a database of 2116800 data by optimizing the prediction. Finally, we
found the optimal vacuum carburizing process parameters through the vast database. The relative error of the three targets is less than that of the
target obtained by the simulation of the corresponding parameters. The relative error is less than 5.6%, 1%, and 0.02%, respectively. Compared to
simulations and actual experiments, the optimized prediction method in this paper saves much computational time. It provides a large amount of
referable process parameter data while ensuring a certain level of accuracy.
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1.introduction

Various heat treatment techniques, including hardening,
carburizing, and tempering, are often used in material
processing to provide critical components for aerospace,
high-speed railroads, and automobiles with sufficient high
strength and high resistance to friction and wear. However,
deformation in the heat treatment process has been
challenging to predict and control [1]. As early as 1992,
scholars proposed the theory and simulation method of
thermal phase transformation mechanics for heat treatment
simulation, which includes the simulation calculation of
vacuum carburization results[2]. The simulation of vacuum
carburization requires a considerable amount of time and
data costs. This study developed a method for data
expansion and optimization of vacuum carburization
parameters in heat treatment based on a few parameters and
machine learning.This method extends the data volume by
constructing a neural network with data augmentation in
the presence of small data samples.

2. Theory and experimental methods
2.1 Theory
Heat treatment simulation software (e.g., COSMAP -

Computer Simulation of Manufacturing Process) has been
used to simulate the coupled diffusion analysis, temperature
analysis, phase transformation, and deformation/stress
distribution during carburizing and quenching processes
(shown in Fig. 1) [3].

Figure 1: Basic theoretical diagram.
However, although simulation software (e.g., COSMAP)

has been developed based on this theoretical foundation to
simulate the temperature field, stress-strain field, and phase
and hardness distributions in quenching under specified
process conditions, multiple simulations and validations are

necessary to find more reasonable process conditions. This
obviously makes it difficult to improve process design and
production efficiency. Therefore, the simulation results of
vacuum carburizing quenching calculated by COSMAP
were firstly used as the teacher signal for deep learning.
And these teacher signals and the requirements and
objectives given in the process design are used to optimize
the selection and deep learning until the carburizing and
quenching of automotive parts on product accuracy is
achieved.
Based on the basic principles of heat treatment and

COSMAP, a virtual heat treatment system (VHT) is
proposed. The diagram of the heat treatment virtual
manufacturing system is shown in Fig 2.
Figure 2 shows an overview of the current virtual heat

treatment system, including the optimization process. First,
the material, quenching, and process databases are
constructed using material design, quenching-cooling, and
carburizing process designs. We have established the
carburizing and quenching knowledge base according to
the actual production and experimental results. In this
database, this paper can obtain about 30 groups of vacuum
carburizing experimental data of cylinder model with
different materials and use the materials represented by six
data groups for research. From the data of these four
databases, heat treatment simulations are performed to
obtain characteristics regarding deformation, organization,
carbon concentration distribution, and hardness
distribution. However, the data characteristics are small,
and the simulation and calculation could be more
convenient. Therefore, 213 sets obtained from simulation
and three experimental data sets are used as training data
sets. The amount of data is expanded by machine learning
to improve the speed of receiving process parameters from
the demand, cross-checking with the database before
putting them into the actual market, and finally responding
to honest requests.



Figure 2: Overview of the heat treatment process.
2.2 Deep Learning Methods
The artificial neural network initially used in this paper is

a Multilayer Perceptron. The number of nodes is 6 · 12 · 20
· 20 · 12 · 6 · 1. In the initial phase of vacuum carburizing,
after obtaining the required target values from the
customer, a certain quantity of vacuum carburizing process
conditions is first listed based on physical laws and
experience to form the basis for the initial parameter data.
Carburized quenching simulations are then carried out
using software such as COSMAP. Suppose the results of
the simulation experiments contain results that match the
target values. To overcome the difficulty of machine
learning algorithms to obtain robust prediction results and
excellent prediction accuracy with small samples,
mega-trend-diffusion (MTD) is used to estimate the
acceptable range of attributes for small data sets, to fill the
information interval and to calculate the virtual sample
value and the affiliation function value (the probability of
occurrence of that sample value). This paper uses a
multi-distribution mega-trend-diffusion (MD-MTD)
technique based on the basic MTD, as shown in Fig 4 [4].

Figure 3: Diagram of MD-MTD
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left (right) skewness describing the non-symmetric
diffusion characteristics of the data.

3.Results
In this paper, in order to determine the most suitable

training frequency under the current neural network
structure, we conducted multiple experiments and
ultimately determined a training frequency of 5000.
This paper uses C# as the front end to call the Python

program running on the back end. In this optimization
result evaluation, the demand target values were set as
follows: carburization layer depth 0.95, surface carbon
concentration 0.69, and surface hardness 833. One set of
experimental data from BMEI is consistent with the
currently set requirements; therefore, data relating to a 1/4
cylinder of the same material and size were used in the
COSMAP simulations, and the parameters for the
simulations were obtained by optimization. The results of
COSMAP simulations are read as shown in Figure 4. The
1/4cylinder model used for the simulation, which has
diffusion coefficients designed concerning the full cylinder,
can therefore be considered following the same physical
laws as the full cylinder due to the symmetry. For the
results to follow a consistent reading method with the
experimental results, values close to the edges of the
cylinder ends were chosen for reading surface hardness and
surface carbon concentration.

Figure 4: Selection of surface hardness(a)、surface
carbon(b).
When reading the depth of the carburized layer, the value

at 0.35% of the carbon content was read as the depth of the
carburized layer. Analyze the effect of optimization on
relative error by comparing it with simulation data and
training data of the same parameters, as shown in Table 1.

Table 1: Optimization results, simulation results, relative
errors between training data and experimental data
Parameter CLD SC SH
Assumptions 0.95 0.69 833
Experimental 0.95 0.69 833
Optimization 0.97854 0.68676 833.12805
Result 3.00% 0.47% 0.0154%
Simulation1 0.907 0.68 767.5
Result 4.526% 1.449% 7.863%



Training 0.95226 0.75010598 773.64301
result 0.238% 8.711% 7.126%

4. Discussion
The relative error of the optimization results is generally

better than the simulated data under the corresponding
parameters, and the relative error with the actual data is
within the allowable range, and the total relative error is
much higher than the optimal data in the training data. can
justify this method of modifying the neural network. The
limitation of this article is that the vacuum carburization
data used are all of the same specified alloy material, and it
is temporarily impossible to optimize and predict the
parameters of vacuum carburization for any alloy.

5.Conclusions
This paper proposes a machine learning based

optimization method for vacuum carburization process,
which utilizes a multi-layer perceptron neural network to
establish a vacuum carburization optimization prediction
system. The vacuum carburization data is trained and
expanded to obtain more small sample training and
optimization parameters. Using the expanded database as a
basis for predicting the optimal vacuum carburizing process
parameters, the expected parameters for the three objectives
had relative errors that were better than the corresponding
simulated results, and the relative errors were all
maintained below 5.6%, 7.414%, and 0.0154%,
respectively. Compared with the standard calculation of
vacuum carburizing process parameters, this method has
the following characteristics: fast analysis and application
of vacuum carburizing simulation data; The process
parameter data obtained through optimization can be used
as new data for the database within specific error
tolerances.
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