
1. Introduction 
 

In the industrial sector, the post-production process of steel 
and alloys involves subjecting them to a heat treatment 
regimen. This entails heating the workpiece to a specified 
temperature and maintaining it at that temperature until the 
desired structural transformation occurs within the material. 
Subsequently, controlled cooling is applied to the workpiece. 
The primary objective of this process1) is to enhance the 
mechanical, physical, and chemical properties of the product 
by inducing structural changes. In heat treatment programs, 
precise control of the cooling rate is crucial, as it directly 
influences the resulting structures. The heat transfer 
coefficient governs the rate at which the coolant effectively 
dissipates heat from the workpiece. The complexity of fluid 
dynamics and mechanical flow during the cooling process 
affects the magnitude of this coefficient. Consequently, 
determining the coefficient necessitates a combination of 
technical examinations, experimental measurements, and 
theoretical calculations. Previous studies2-3) have 
demonstrated the feasibility of approximating the heat 
transfer coefficient by employing inverse methods and 
utilizing measurements. However, bio-inspired heuristic 
algorithms utilized for this purpose exhibit a high level of 
predictability, these algorithms are computationally 
intensive, often requiring over 10 hours to complete. 
Additionally, prior to initiating these calculations, the user 
must specify the locations at which the nominal functions, 
derived from measurements, are to be compared with the 
functions obtained from the inverse algorithm. Failure to set 
these points correctly may result in incomprehensible 
outcomes that are only evident after several hours of 
simulation. To mitigate unnecessary and erroneous 

 
 
 

simulations, it is desirable to develop a rapid estimation 
method that can provide users with nearly instantaneous 
feedback on the results. Moreover, this method can be 
executed even before using bio-inspired heuristic algorithms, 
allowing successful heuristics to be initiated based on the 
initial estimation. The aim of this research is to develop a 
method that is suitable for approximating the heat transfer 
coefficient function in an environment where accuracy is not 
that important, but the speed is in focus. Application of the 
method is, for example, incorporation into a hybrid 
algorithm. In previous research, the application of deep 
neural networks has already been demonstrated to be 
efficient in solving complex problems, such as assessment 

and disease diagnosis5-6). This precedent underscores the 
suitability of employing a neural network to address the 
present heat transfer coefficient approximation problem. 
 

2. Methodology 
 

2.1 Heat transfer model 
As part of the numerical method a heat transfer model was 

applied, which is described by the following differential 
equation, assuming central-symmetric heat transfer 
conditions for a cylinder with finite length of L: 

 
∇ ⋅ (λ(𝒓𝒓,𝑇𝑇) ⋅ ∇𝑇𝑇) + 𝑄𝑄(𝑇𝑇, 𝒓𝒓, 𝑡𝑡) = 𝐶𝐶𝑝𝑝(𝒓𝒓,𝑇𝑇)ρ(𝒓𝒓,𝑇𝑇) ⋅ ∂𝑇𝑇

∂𝑡𝑡
 (1) 

 
where r is the coordinate along the radius, t is time, T is 

temperature, 𝜆𝜆 is thermal conductivity, 𝐶𝐶𝑝𝑝 is heat capacity, 
𝜌𝜌  is density, Q is latent heat (its value is zero during the 
entire heat transfer process). The initial condition is 
described by the following equation: 
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              𝑇𝑇(𝒓𝒓, 𝑡𝑡 = 0) = 𝑇𝑇𝑎𝑎(𝒓𝒓)             (2) 
 
where 𝑇𝑇𝑎𝑎  is the initial temperature of the domain. The 

boundary conditions are described by the following 
equations: 

 

          
−𝜆𝜆 𝜕𝜕𝜕𝜕

𝜕𝜕𝒓𝒓
= ℎ1(𝑇𝑇)(𝑇𝑇(𝒓𝒓, 𝑡𝑡) − 𝑇𝑇𝑎𝑎𝑎𝑎)

. . .
−𝜆𝜆 𝜕𝜕𝜕𝜕

𝜕𝜕𝒓𝒓
= ℎ𝑝𝑝(𝑇𝑇)(𝑇𝑇(𝒓𝒓, 𝑡𝑡) − 𝑇𝑇𝑎𝑎𝑎𝑎)

        (3) 

 
where 𝑇𝑇𝑎𝑎𝑎𝑎  is the coolant temperature, ℎ𝑖𝑖 is i. heat 

transfer coefficient for the rim.  
 

 
1. Figure - Axismmetric cylindrical geometry 

 
The edges of the cylinder are marked as Γ, and the 

conditions Γ1 ∪ Γ2 ∪. . Γ𝑝𝑝 = Γ  and Γ1 ∩ Γ2 ∩. . Γ𝑝𝑝 = ∅  hold 
true for these edges. Each edge Γ possesses a temperature-
dependent heat transfer coefficient ℎ𝑖𝑖(𝑇𝑇). The heat transfer 
coefficient function is implemented using (T, h) data pairs, 
with the coefficient value determined through linear 
interpolation between the points. In the case of an 
axisymmetric cylinder, three edges are considered: the 
curved surface and the two bases, as depicted in Figure 1. 
However, if the heat transfer calculations are limited to the 
inner circle of an infinitely long cylinder, only the curved 
surface edge remains. Consequently, in this study, one-
dimensional heat transfer analysis is performed, with a 
single edge defined at the coordinate r=R. The temperature 
distribution along the radius is calculated at Nx points. To 
solve the differential equation, the Smith's7) explicit finite 
difference method is employed. 

 
2.2 Inverse Heat Conduction Problem 

The specimen's temperature was measured at p points 
within the boundary. Following the thermal field calculation, 
𝑇𝑇𝑖𝑖𝐶𝐶  is obtained and utilized to compute the difference 
between 𝑇𝑇𝑖𝑖𝐶𝐶   and 𝑇𝑇𝑖𝑖𝑀𝑀  as defined in ¥ref{eq:cost}. 
equation. The solution to the inverse heat conduction 
problem7) can be achieved by minimizing this objective 
function. 

 
           𝑆𝑆 =  ∑ (𝑇𝑇𝑖𝑖𝐶𝐶 − 𝑇𝑇𝑖𝑖𝑀𝑀)2𝑝𝑝

𝑖𝑖=1               (4) 
 
2.3 Initialization strategy 

A robust optimization method is recommended to solve 
the inverse problem, ensuring avoidance of local extreme 
values. Bio-inspired heuristic algorithms3-4) are well-suited 
for this purpose. By exploring global extreme values at 

multiple calculation points instead of a single point, these 
algorithms prevent getting trapped in local optima. In a 
previous study, the author8) used the Adaptive Fireworks 
Algorithm (AFWA), a variant of the Fireworks Algorithm, 
to address this specific problem. Computational efficiency 
comparisons were made between AFWA and the Genetic 
Algorithm. Numerical tests demonstrated that AFWA can 
estimate heat transfer coefficients; however, it exhibits 
significant computational intensity. When dealing with a 
higher number of dimensions, obtaining results from AFWA 
can take several hours. To mitigate this weakness, learning 
algorithms offer a viable solution as they do not operate 
iteratively. For instance, artificial neural networks, which 
fall under the category of learning algorithms, require 
considerable training time (the iterative phase); however, 
once the model is trained, heat transfer coefficient 
estimations can be quickly obtained. Although the accuracy 
may not be on par with swarm-based algorithms, leveraging 
these initial results can significantly reduce the overall 
running time. This approach is referred to as an initialization 
strategy, and it allows for the creation of hybrid methods by 
combining learning algorithms with swarm-based 
optimization algorithms. 

 
2.4 Artificial Neural Network 

The Universal Approximation Theorem9) states that any 
function can be approximated with an artificial neural 
network with the appropriate number of neurons. An 
artificial neural network is a learning-based model that 
(partially) mimics the biological processes of the human 
brain. It has already been demonstrated in previous 
research10) that the artificial neural network can be used to 
solve the inverse heat transfer problem. The utilized model 
is a feed-forward artificial neural network. Each neuron in a 
layer is connected to all neurons in the adjacent layers. The 
input layer of the model consists of 15 neurons, 
corresponding to the number of Fourier coefficients, while 
the output layer comprises 14 neurons, representing the 
control points of the heat transfer coefficient. A total of 14 
(T, HTC) data pairs are used, resulting in the derivation of 7 
control points. The network incorporates a single hidden 
layer, consisting of 100 neurons. Sigmoid activation 
functions are applied to the neurons in the hidden layer, 
while the input and output layers use linear activation 
functions. 

 
2.5 Dataset 
The dataset was generated by recording the cooling curve of 

a 12.5 mm diameter cylinder composed of Inconel 600 
alloy at a specific location along the axis during 
immersion hardening. For the purpose of heat transfer 
analysis, a one-dimensional heat transfer assumption is 
made, considering the cylinder to have infinite length, 
which will be simulated later. Subsequently, the heat 
transfer coefficient functions were reconstructed using a 
well-established Inverse Heat Conduction Problem 
(IHCP) algorithm. The heat transfer coefficient functions 
were encoded with 7 control points, representing the 
(temperature - HTC) pairs. By averaging the heat transfer 
coefficient functions, a single average heat transfer 
coefficient function was obtained. To introduce variability, 
150,000 heat transfer coefficient functions were randomly 



generated around the control points of the mean function, 
with a standard deviation. 

 

 
2. Figure - Generated heat transfer coefficient and the associated 

drop curve and its derivative 

 
2.6 Preprocessing 

The data preprocessing steps were carried out during the 
dataset creation process. The first step involved numerically 
deriving the cooling curve, resulting in the CR cooling rate. 
To determine the Tvp and Tcp points that define the source 
section, the cooling curve was analyzed. By identifying the 
maximum point and subsequently moving left and right until 
reaching the inflection points, the Tvp and Tcp points were 
determined. In the second preprocessing step, the Tvp - Tcp 
range of the cooling curve was isolated for further analysis, 
and this range was saved as CR_TvpTcp in a file.  

 

 
3. Figure - Fourier transformed applied on Cooling Rate 

 
The final preprocessing step aimed to remove the time 

dependency of the cooling curve. This was achieved by 
transforming the cooling curve into the frequency domain 
using the Fourier transformation. By encoding the curve 
with its Fourier coefficients, the cooling curve could be 
represented with significantly fewer numbers. This process 
was applied to the CR_TvpTcp curve, as depicted in Figure 
3. where the negative range was omitted due to symmetry. 
The one-dimensional discrete Fast Fourier Transformation 
algorithm was utilized to perform the Fourier transform on 
the CR_TvpTcp curve. 

 
2.7 Evaluation 

 
2.7.1 Result 

Upon completion of pre-processing, the heat transfer 
coefficient was estimated using a trained feed-forward 
artificial neural network (MLP). It should be noted that the 
expected output heat transfer coefficient of the test dataset is 
encoded with 32 control points, whereas the MLP can 

estimate only 7 control points. Hence, a direct comparison 
between the two is not feasible. To enable comparison, the 
heat transfer values in the temperature range of 0-1000 °C 
were calculated via linear interpolation between the control 
points of both HTC functions. Subsequently, the two 
functions were compared at 1000 temperature points, with 
the absolute error between them computed and presented in 
the right side of Figure 4. On the left side of the figure, the 
two HTCs are depicted. It can be observed that the maximum 
error does not exceed 500. While it is challenging for a 
function encoded with 7 points to precisely approximate the 
original function encoded with 32 points, the MLP model 
provides a suitable approximation from which another 
optimization algorithm can be initiated. Furthermore, by 
increasing the number of search dimensions, additional 
control points can be interpolated between the existing ones, 
facilitating a closer approximation to the original function. 
Additionally, it is worth noting that the MLP achieved a 
satisfactory estimate of the function within 1 second, 
whereas an iterative optimization algorithm would have 
required thousands of iterations to achieve a comparable 
result. 

 

 
4. Figure - Estimation 

2.7.2 Comparison with conventional learning algorithms 
The performance evaluation of the algorithms was 

conducted using average error and standard deviation 
metrics. The average error and standard deviation were 
calculated for all the curves in the test dataset. The results, 
including the average error and error standard deviation, are 
presented in Figure 5. The artificial neural network is 
denoted as MLP, the decision tree as Decision Tree11) and the 
K-nearest neighbors algorithm12) as K-NN. The heat transfer 
coefficient was estimated using each model with the 
preprocessed data as described earlier. Additionally, to 
demonstrate the importance of preprocessing, the heat 
transfer coefficient was estimated based solely on the 
cooling rate and without any preprocessing. The average 
error of the estimates made on preprocessed inputs is 
indicated with the label FFT, while the error of the estimate 
based on the unprocessed cooling rate is indicated with the 
label CR. 

 



 
5. Figure - Comparison of learning algorithms 

From the figure, it is evident that the learning algorithms 
achieve significantly improved performance with Fourier 
transformed data, with the average error of the FFT models 
being nearly half compared to the CR models. Furthermore, 
the diagram reveals that MLP, Decision Tree, and K-NN 
yield similar estimation results, exhibiting almost identical 
error levels. Consequently, it can be inferred that all three 
learning algorithms can be utilized interchangeably for heat 
transfer coefficient estimation. 

 
2.7.3 Hybrid solution 
In the first scenario, the presented initialization strategy was 

employed, where the heat transfer coefficient function 
was approximated using an artificial neural network. 
Subsequently, the Adaptive Fireworks Algorithm 
(AFWA) was initialized based on the obtained 
approximation. The search was initiated from these points, 
considering the swarm-based nature of AFWA. To prevent 
the algorithm from converging to a single point, the points 
were initialized around the approximation.  

 

 
6. Figure - Number of total iterations 

In the second scenario, AFWA was executed independently 
without the neural network initialization. The results of 
both optimizations are displayed in Figure 6. Both 
methods were terminated based on the same stopping 
condition. It is noteworthy that the AFWA initialized with 
MLP required only 28 iterations to reach the solution, 
whereas the standalone AFWA necessitated over 900 

iterations to achieve the same outcome. Consequently, 
employing this hybrid approach significantly reduces the 
optimization runtime, as demonstrated by the results. 

 
2.8 Conclusion 

The aim of this research was to develop a robust method 
for estimating the heat transfer coefficient using an artificial 
neural network, specifically designed for time-independent 
analysis in a one-dimensional heat transfer domain. To train 
the neural network, a dataset comprising 150,000 records 
was generated based on filtered measurements using 
predefined rules. Prior to training, the dataset was Fourier 
transformed to transition the data from the time domain to 
the frequency domain. This preprocessing step ensured that 
the trained network was not reliant on the duration of the 
entire cooling process. The network was then trained on this 
preprocessed dataset and validated using a separate test 
dataset. The Fourier transform of the trained artificial neural 
network enabled the estimation of the heat transfer 
coefficient function from the cooling curve. Additionally, 
estimations were performed on unprocessed cooling curves 
and with alternative learning algorithms such as Decision 
Trees and K-nearest neighbors. Results indicated that 
superior estimations could be achieved using Fourier 
transformed inputs, and all the considered learning 
algorithms could perform the estimation. Thus, each model 
can be utilized within the initialization strategy. 
Subsequently, a heat transfer coefficient function was 
reconstructed using the Adaptive Fireworks Algorithm. The 
initial points of the algorithm were initialized based on the 
results obtained from the artificial neural network. The 
algorithm was then executed independently. Notably, the 
network-initialized optimization required significantly 
fewer iterations to converge to the same solution. It is 
important to note that the network estimation is applicable 
exclusively to one-dimensional heat transfer models but has 
the potential for extension to two-dimensional models. 
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